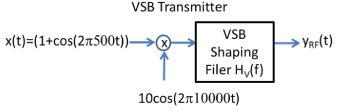
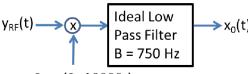

EECS 562


Homework 8


- **1.** Let $x_{bb}(t) = 2\cos(2\pi 400t) + 1.5\cos(2\pi 450t) + 1.25\cos(2\pi 500t)$
 - This signal is input to an SSB modulator with f_c =5000Hz that uses the upper sideband.
 - a. Plot the RF Spectrum of the SSB signal.
 - b. What is the required RF Bandwidth?
 - c. A coherent detector is required to recover m(t) from the RF signal. TRUE or FALSE
 - d. Mathematically show how the message signal is recovered.
 - e. Draw the block diagram for a receiver for this SSB signal.
- 2. Watch "8VSB, From Transport Stream to RF Signal"

https://www.youtube.com/watch?v=ZlAjfA-hU_8

- a. What does the 8 refer to in 8VSB?
- b. How is most of the lower sideband removed?
- c. 8VSB uses a synchronous receiver, TRUE or FALSE.
- d. Mathematically explain how shifting the signal by 1.25 V generates the pilot signal.
- **3.** In this problem the information signal is $x_{bb}(t)=1+\cos(2\pi500t)$. Let the input to the VSB shaping filter given below be $10(1+\cos(2\pi500t))\cos(2\pi10000t)$, here $f_c=10$ kHz. Let $y_{RF}(t)$ be signal at the output of the VSB shaping filter as shown below. The VSB receiver is also given below.

- $2\cos(2\pi 10000t)$
- a. Sketch the spectrum of $y_{RF}(t)$, i.e., the signal at the output of the VSB shaping filter.
- b. Find the output signal, $x_o(t)$, of the receiver.